Normal mode partitioning of Langevin dynamics for biomolecules.

نویسندگان

  • Christopher R Sweet
  • Paula Petrone
  • Vijay S Pande
  • Jesús A Izaguirre
چکیده

We propose a novel normal mode multiple time stepping Langevin dynamics integrator called NML. The aim is to approximate the kinetics or thermodynamics of a biomolecule by a reduced model based on a normal mode decomposition of the dynamical space. Our basis set uses the eigenvectors of a mass reweighted Hessian matrix calculated with a biomolecular force field. This particular choice has the advantage of an ordering according to the eigenvalues, which have a physical meaning of being the square of the mode frequency. Low frequency eigenvalues correspond to more collective motions, whereas the highest frequency eigenvalues are the limiting factor for the stability of the integrator. In NML, the higher frequency modes are overdamped and relaxed near their energy minimum while respecting the subspace of low frequency dynamical modes. Our numerical results confirm that both sampling and rates are conserved for an implicitly solvated alanine dipeptide model, with only 30% of the modes propagated, when compared to the full model. For implicitly solvated systems, NML gives a twofold improvement in efficiency over plain Langevin dynamics for sampling a small 22 atom (alanine dipeptide) model and in excess of an order of magnitude for sampling an 882 atom (bovine pancreatic trypsin inhibitor) model, with good scaling with system size subject to the number of modes propagated. NML has been implemented in the open source software PROTOMOL.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations

Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...

متن کامل

Gyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations

The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...

متن کامل

Overcoming stability limitations in biomolecular dynamics. I. Combining force splitting via extrapolation with Langevin dynamics in LN

We present an efficient new method termed LN for propagating biomolecular dynamics according to the Langevin equation that arose fortuitously upon analysis of the range of harmonic validity of our normal-mode scheme LIN. LN combines force linearization with force splitting techniques and disposes of LIN’s computationally intensive minimization ~anharmonic correction! component. Unlike the compe...

متن کامل

Investigation of Monte Carlo, Molecular Dynamic and Langevin dynamic simulation methods for Albumin- Methanol system and Albumin-Water system

Serum Albumin is the most aboundant protein in blood plasma. Its two major roles aremaintaining osmotic pressure and depositing and transporting compounds. In this paper,Albumin-methanol solution simulation is carried out by three techniques including MonteCarlo (MC), Molecular Dynamic (MD) and Langevin Dynamic (LD) simulations. Byinvestigating energy changes by time and temperature (between 27...

متن کامل

Multiscale Dynamics of Macromolecules Using Normal Mode Langevin

Proteins and other macromolecules have coupled dynamics over multiple time scales (from femtosecond to millisecond and beyond) that make resolving molecular dynamics challenging. We present an approach based on periodically decomposing the dynamics of a macromolecule into slow and fast modes based on a scalable coarse-grained normal mode analysis. A Langevin equation is used to propagate the sl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 128 14  شماره 

صفحات  -

تاریخ انتشار 2008